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1 Introduction

Polyhedral and generalized polyhedral cells appear naturally in reservoir mod-
els simulating thinning or tapering out (”pinching out”) of geological layers.
The pinch-outs are modeled with mixed types of mesh cells including penta-
hedrons, prisms and tetrahedrons which are obtained by collapsing pairs of
vertices in a structured hexahedral or prismatic mesh. The polyhedral meshes
are used actively in a number of hydrodynamics applications [3]. Other sources
of polyhedral meshes are the adaptive mesh refinement methods. A locally
refined mesh may be considered as the conformal polyhedral mesh with de-
generate cells (for instance, when the angle between two neighboring faces in
a cell is zero). Usage of polyhedral cells allows us to avoid superfluous mesh
refinement.

In contract to Voronoi meshes (see e.g., [5] and references therein), arbi-
trary polyhedral meshes provide greater flexibility for meshing complex do-
mains. For instance, badly shaped tetrahedra such as slivers can be merged
with their neighbors forming shape-regular polyhedra.

Extension of modern discretization methods to polyhedral cells having
complex shapes is relatively easy [6, 2]. Indeed, calculations in these methods
are performed on the surface of a polyhedral cell, which is a lower-dimensional
manifold and hence is easier to treat numerically. These methods impose weak
restrictions on shapes of admissible polyhedral cells (see, Fig. 2), and allows
us to build optimal-order discretization schemes for a large variety of PDEs
on almost arbitrary meshes.

Overall, non-Voronoi polyhedral meshes are quite competitive and in some
application areas are preferable to simplicial meshes [4]. In this note, we
summarize various existing shape regularity requirements that have to be
respected by the developers of polyhedral mesh generators. This summary
has been written in a hope to stimulate more research on polyhedral meshes.
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2 Shape-regular polyhedral meshes

A polyhedron P is usually defined as a closed domain in three dimensions with
flat faces and straight edges. Analysis of discretization schemes is typically
conducted on a sequence of conformal polyhedral meshes {Ωh}h where h is
the diameter of the largest cell in Ωh and h→ 0. A polyhedral mesh is called
conformal if intersection of any two distinct polyhedra P1 and P2 is either
empty, or a few mesh points, or a few mesh edges, or a few mesh faces (two
adjacent cells may share more than one edge or more than one face).

Let |O| denote the Euclidean measure of a mesh object O and hO be its
diameter. Let N?, ρ?, γ? and τ? denote various mesh independent constants
that are explained below. A polyhedral mesh should satisfy some minimum
shape-regularity conditions in order to guarantee optimal error estimates in
PDE solvers that depend only on the above star-constants.

(M1) Every cell P has at most N? faces and each face f has at most N?

edges.
(M2) For every polyhedron P with faces f and edges e, we have

ρ? h
3
P ≤ |P|, ρ? h

2
P ≤ |f|, ρ? hP ≤ |e|. (1)

(M3) For each face f, there exists a point xf ∈ f such that f is star-shaped
with respect to every point in the disk of radius γ?hf centered at xf as
illustrated in Fig. 1.

.

xf

xP

Fig. 1. Left: a feasible set and a polygonal face f star-shaped with respect to the
disk centered at xf . Right: a non-convex polyhedral cell P star-shaped with respect
to the sphere centered at xP.

(M4) For each cell P, there exists a point xP such that P is star-shaped with
respect to every point in the sphere of radius γ? hP centered at xP.

(M5) For every P ∈ Ωh, and for every f ∈ P, there exists a pyramid Qf

contained in P such that its base equals to f, its height equals to γ? hP
and the projection of its vertex onto f is xf .
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Fig. 2. Shape-regular convex (left) and degenerate non-convex (right) polyhedra.

Two examples of shape-regular polyhedra are shown in Fig. 2. The condi-
tions (M1)-(M5) are sufficient to develop an a priori error analysis of various
discretization schemes. We recall only two results underpinning this error anal-
ysis. The first one is the Agmon inequality that uses (M5) and allows us to
bound traces of functions. It states that for any function q in the Sobolev
space H1(P), we have:∑

f∈∂P

‖q‖2L2(f) ≤ C
(
h−1P ‖q‖

2
L2(P) + hP|q|2H1(P)

)
. (2)

The second one is the following approximation result crucial for proving a pri-
ori error estimates. Let m be an integer. Then, for any function q ∈ Hs+1(P)
with 0 ≤ s ≤ m, there exists a polynomial qm of order at most m such that

‖q − qm‖L2(P) +

s∑
k=1

hkP|q − qm|Hk(P) ≤ Chs+1
P |q|Hs+1(P). (3)

For error analysis of problems appearing in fluid flows and structural me-
chanics that is based on conditions (M1)-(M5), we refer to [6] and the ex-
tensive list of references therein.

3 An equivalent set of sufficient conditions

The above shape-regularity conditions are satisfied by a wide class of polyhe-
dral meshes that may include non-convex or degenerate cells. Here, we give
a shorter set of equivalent conditions that was inspired by a finite element
analysis on simplicial meshes [1].

(A1) Every polyhedron P ∈ Ωh admits a conformal decomposition Th that
is made of less than N? tetrahedra and includes all vertices of P.

(A2) Each tetrahedron T ∈ Th is shape-regular: the ratio of radius rT of the
inscribed sphere to diameter hT is bounded from below:

rT ≥ ρ?hT.
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(A3) Each cell P (resp., each face f) is star-shaped with respect to the cen-
troid of a tetrahedron T ∈ Th (resp., a triangle in the surface mesh Th|f).

We stress that only existence of a tetrahedral partition Th is required, a
fact that can be easily verified in most cases. Moreover, these partitions are
not required to match across cell boundaries.

4 Shape-regular generalized polyhedral meshes

If a cell has curved faces, e.g. a bubble in a soap foam, it is called the general-
ized polyhedron. Some generalized polyhedra have many interesting geometric
properties; unfortunately, we cannot apply right-away conditions (M2)-(M5).
An alternative way to characterize shape properties of a generalized polyhe-
dron is based on the definition of a generalized pyramid.

hQ̂

y
x

z

r

0

Fig. 3. A reference pyramid Q̂ containing a sphere of radius r.

Definition 1. Let k ≥ 3 and γ? < 1. A generalized pyramid Q with k lateral
faces and shape-regularity constants γ? and τ? is a subset of <3 that can be
constructed in three steps:

1. Take a pyramid Q̂ whose base f̂ is a convex polygon with k edges. Let v
Q̂

be the vertex of this pyramid, h
Q̂

be its diameter, and H
Q̂

be its height

(see Fig. 3). Up to a rigid-body displacement, we can assume that v
Q̂

is

in the origin and f̂ is a subset of the plane z = H
Q̂

. We also assume that

Q̂ contains a sphere of radius

r ≥ γ? hQ̂.

2. Define a radial one-to-one C1 mapping Φ of the pyramid Q̂ into itself.
In a radial map a point x and its image x′ = Φ(x) lie on the same ray
emanating from the origin. We assume that
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max
x∈Q̂
‖∇Φ(x)‖ ≤ τ? and max

x′∈Q
‖∇(Φ−1)(x′)‖ ≤ τ?. (4)

3. Define the generalized pyramid Q ≡ Φ(Q̂). The image of the base f̂ is a

C1 surface f, f ≡ Φ(̂f), that we will refer to as the base of the generalized

pyramid. Accordingly, the images of the k lateral faces of Q̂ will be referred
to as the lateral faces of Q.

The convexity assumption of f̂ could be replaced with a star-shaped con-
dition (M3).

Definition 2. A generalized polyhedron P is formed by the generalized pyra-
mids that have the same vertex xP. The vertex xP lies strictly inside P. The
boundary ∂P is the union of the bases of the generalized pyramids. These
bases will be referred to as the faces of P.

Now, we describe a class of shape-regular generalized polyhedral meshes.
A generalized polyhedral mesh Ωh is called shape-regular if it satisfies the
following condition.

(G1) Every generalized polyhedron P ∈ Ωh is the union of at most N?

generalized pyramids with at most N? lateral faces and shape constants
γ? and τ?.

Condition (G1) is related to the mesh shape regularity conditions (M1)–
(M5) introduced above. For instance, it implies immediately that every cell
P is star-shaped with respect to the common vertex xP of the generalized
pyramids that form it. Boundness of the mapping Φ is critical for proving the
uniform scaling (1), the Agmon inequality (2) and the approximation result
(3). Finally, we can prove that the average normal vector ñf to a curved face
f is well behaved:

ñf =
1

|f|

∫
f

nfdS, ‖ñf‖ ≥
2γ?
τ4?

.
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